Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration.
نویسندگان
چکیده
The collective migration of cells is fundamental to epithelial biology. One of the hallmarks of collective behavior in migrating cohesive epithelial cell sheets is the emergence of so called leader cells. These cells exhibit a distinct morphology with a large and highly active lamellipodium. Although it is generally accepted that they play a crucial part in collective migration, the biophysical factors that regulate their formation remain unknown.Here we show that a geometry-based cue like local variation of curvature of the collective's perimeter is capable of triggering leader cell formation and promoting enhanced motility at defined positions. Remarkably, the extent of this effect scales with the magnitude of the curvature.Cytoskeletal tension was found to be important for geometry induced leader cell formation, as cells treated with tension reducing agents appeared less sensitive to local curvature variation. Accordingly, traction force microscopy revealed an increased level of shear stress at highly curved positions even before the cell migration had actually started, indicating the presence of a collective polarization induced by the geometry of the confinement.Together our findings suggest that high curvature leads to locally increased stress accumulation, mediated via cell-substrate interaction as well as via cytoskeleton tension. The stress accumulation in turn enhances the probability of leader cell formation as well as cell motility. This work defines the importance of geometric cue such as local curvature in the collective migration dynamics of epithelial cells and thus shows implications for the biophysical regulation of epithelium during wound healing, embryonic development, and oncogenesis.
منابع مشابه
Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration
At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysi...
متن کاملNotch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.
At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression anal...
متن کاملLeader cell positioning drives wound-directed collective migration in TGFβ-stimulated epithelial sheets
During wound healing and cancer metastasis, cells are frequently observed to migrate in collective groups. This mode of migration relies on the cooperative guidance of leader and follower cells throughout the collective group. The upstream determinants and molecular mechanisms behind such cellular guidance remain poorly understood. We use live-cell imaging to track the behavior of epithelial sh...
متن کاملPhase-field model for collective cell migration.
We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell ...
متن کاملLeader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating colle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biointerphases
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2013